

ALGEBRAIC TOPOLOGY

Prof. Dr. Hana' M. Ali

Lecture 3

NULL HOMOTOPIC MAPS

Definition:

A continuous map $f: X \to Y$ from a topological space X into a topological space Y, are said to be null homotopic if, it is homotopic to a constant map $C_{y_0}: X \to Y$, (i.e. $C_{y_0}(x) = y_0$, for all $x \in X$ and for some $y_0 \in Y$ and $f \simeq C_{y_0}$).

Examples:

1. Every continuous map $f: X \to \mathbb{R}^n$ from a topological space X into the Euclidean space \mathbb{R}^n is null homotopic. In fact, $f \simeq C_{y_0}$, for any $y_0 \in \mathbb{R}^n$ and the homotopy $H: X \to \mathbb{R}^n$ between them can be defined as:

 $H(x,t) = (1-t) f(x) + t y_0$, for all, $(x,t) \in X \times I$.

2. If S is a convex subset of \mathbb{R}^n , then any continuous map $f: X \to S$ is null homotopic.

3. If Y is indiscrete topological space (i.e. $T = \{\emptyset, X\}$), then any map $f: X \to Y$ is null homotopic. Prof. Dr. Hana' M. Ali

Remark:

Null homotopic maps need not to be homotopic, indeed any two constant maps C_{y_0} , $C_{y_1}: X \to Y$ from a topological space X into a topological space Y need not to be homotopic.

In fact, if $f \simeq C_{y_0}$ and $g \simeq C_{y_1}$, then $f \simeq g$ if and only if, $C_{y_0} \simeq C_{y_1}$. As we know, the homotopy $H: C_{y_0} \simeq C_{y_1}$ form a path from y_0 into y_1 (show that). Therefore, two null homotopic maps $f, g: X \to Y$ with $f \simeq C_{y_0}$ and $g \simeq C_{y_1}$, are homotopic if and only if, y_0 and y_1 contained in the same path component (show that).

Definition:

- ✓ Let X be a topological space and $p \notin X$ be a point.
- ✓ Let $p \cup (X \times I)$ be the disjoint union of p and the product space $X \times I$, i.e. a subset G is open in $p \cup (X \times I)$ if and only if, $G \cap (X \times I)$ is pen in $X \times I$.
- ✓ Define an equivalence relation ~ on $pU(X \times I)$ as:

 $p \sim (x, 1)$, for all $x \in X$.

✓ A join pX is the quotient space p U(X × I)/~, i. e. pX denotes the set of all the equivalence classes that related to ~, with the identification topology, i.e. if θ: pU(X × I) → pX be the identification map that defined as:
Prof. Dr. Hana' M. Ali

Definition?

$\theta(y) = [y]$, for all $y \in p \cup (X \times I)$,

Then $A \subseteq pX$ is open in pX, if and only if, $\theta^{-1}(A)$ is open in $p \cup (X \times I)$. Note:

The join pX, obtain a new topology assigning a topology on $X \times I$, in which any open set G meet $X \times \{1\}$ (i.e. $G \cap (X \times \{1\}) \neq \emptyset$), contains $X \times \{1\}$, since $[p] = [X \times \{1\}]$ $[p] = p \cup (X \times \{1\}).$ A $G = \theta^{-}$ $X \times \{1\}$ θ pХ $X \times I$ Prof. Dr. Hana' M. Ali

Theorem:

A mapping $f: X \to Y$ is null homotopic, if , and only if, f can be extended to all of a join pX.

Proof: Suppose f can be extended to all of a join pX and $g: pX \rightarrow Y$ be an extension map of f, so we have the following commutative diagrams:

 $f_{G}(X \times \{0\}) = f$, where $G: X \times I \to pX$ is a continuous map given by: G(x, 1) = p and $G(x, t) = [(x, t)] = \{(x, t)\}, \text{ for all } (x, t) \in X \times I.$ Then we have a continuous map $H = g \circ G: X \times I \rightarrow Y$ that satisfied: $H(x,0) = g \circ G(x,0) = g(G(x,0)) = g([(x,0)]) = f(x)$, and; $H(x,1) = g \circ G(x,1) = g(G(x,1)) = g([p]) = C_{g([p])}(x)$, for all $x \in X$. Thus, H forms a homotopy from f into a constant map $C_{q([p])}$. Therefore, f is null homotopic.

As a homework, prove that if f is null homotopic, then f can be extended to all a join pX. Prof. Dr. Hana' M. Ali

Exercise:

- 1. Define the notions, topological pair, map of topological pairs and homotopic relative maps.
- 2. Give an examples.
- 3. Prove that, the relation (homotopic relative to a set) on the set of all maps of topological pairs, is an equivalence relation.

Thank You Very Much For Lessening

